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Summary 

This research report is presented in three parts. In the first part, acoustical 
analyses were performed on modes of vibration of the housing of a transmission 
of a gear test rig developed..by NASA. The modes of vibration of the 
transmission housing were measured using experimental modal analysis. The 
boundary element method (BEM) was used to calculate the sound pressure and 
sound intensity on the surface of the housing, and the radiation efficiency of each 
mode. The radiation efficiency of each of the transmission housing modes was 
then compared to theoretical results for a finite baffled plate. 

In the second part, analytical and experimental validation of methods to 
predict structural vibration and radiated noise are presented. A rectangular box 
excited by a mechanical shaker was used as a vibrating structure. Combined 
finite element method (FEM) and boundary element method (BEM) models of the 
apparatus were used to predict the noise level radiated from the box. The FEM 
was used to predict the vibration, while the BEM was used to predict the sound 
intensity and total radiated sound power using surface vibration as the input data. 
Vibration predicted by the FEM model was validated by experimental modal 
analysis, noise predicted by the BEM was validated by measurements of sound 
intensity. Three types of results are presented for the total radiated sound power: 
(1) sound power predicted by the BEM model using vibration data measured on 
the surface of the box; (2) sound power predicted by the FEM/BEM model; and 
(3) sound power measured by an acoustic intensity scan. 

In the third part, the structure used in part two was modified. A rib was 
attached to the top plate of the structure. The FEM and BEM were then used to 
predict structural vibration and radiated noise respectively. The predicted 
vibration and radiated noise were then validated through experimentation. 



CHAPTER 1 

INTRODUCTION 

Helicopters have evolved into very versatile air mobile vehicles offering broad 
application for both military and civilian usage. Helicopter transmission research has 
progressed over two decades. One of the major goals of past research was to reduce noise 
and vibration, which are of concern for many reasons. Noise and vibration are not only 
aesthetically displeasing, they are also potentially dangerous to the pilot, crew, and 
passengers, as well as to the helicopter itself. The military is most concerned with pilot 
safety, workload, and efficiency, while commercial users are interested in attracting 
passengers who expect smooth and quiet riding with the convenience of taking off 
vertically from congested areas. 

The interior noise of a helicopter ranges from 100-120 dB(A) [1]. The noise can 
come from many sources, such as the transmission, turbine engine compressor, exhaust 
system, rotor blades, and air turbulence. Through research, the National Aeronautics and 
Space Administration (NASA) and the helicopter industry have established that the 
transmission is the most prevalent source of noise [1, 2]. At least three sources of 
transmission noise have been identified: noise produced by gear teeth impacting when they 
engage; noise produced by air and oil displacing or pumping when the teeth engage; and 
noise radiated by the gear. The transmission path for impact-generated noise is structure 
borne; the energy passes through the gears, shafts and bearings and into the housing. The 
transmission path of the air-pumping noise is predominantly through the air inside the gear 
box. The path for gear-radiated noise is also the air inside the gear box [2]. 

NASA is currently studying the gear-impact noise problem [2]. Work is underway 
to determine and thus understand the path of transmission from the gears to the housing. 
However, very little work has been done to predict the noise that will be radiated by the 
housing. To date, little or no research appears to have been conducted to understand either 
the air-pumping noise or the noise radiated by the gears and their associated transmission 
path. 

The air-pumping and gear-radiated noise couple to the gear housing through the air 
inside the gear box. The inside of the gear box is a sealed acoustical cavity, and as such, 
possesses acoustical resonances. Coupling between the gear-radiated noise and the 
housing will be most efficient when gear modes, cavity modes and gear housing modes lie 
in the same frequency band. Because all three resonant systems (gears, cavity and 
housing) have high modal density, it is likely that there are certain frequencies at which 
very efficient coupling occurs. The air-pumping noise also will couple to the housing 
through the resonant modes of the air cavity inside the gear box. From the gear housing to 
the helicopter cabin there are two primary paths by which noise will be transmitted: as noise 
radiated directly by the gear box and as vibration transmitted through the gear box mounted 
to the structural enclosure of the cabin. 

The purpose of this research was to predict the extent of transmission of vibration 
and noise during the design stage and to validate both through experimentation. There are 
two steps involved in predicting noise radiated by a machine: the first is the determination 
of machine vibration, the second is the prediction of noise based on the predicted vibration 
or on the vibration obtained from other approaches (e.g., experimental data). The methods 
used to predict machine vibration include analytical methods and the finite element method 
(FEM), while methods used to predict machine-radiated noise include analytical methods, 
the finite element method, and the boundary element method (BEM). 



Perreira and Dubowsky used a combined analytical-numerical method to model 
simply-shaped machine elements [3, 4]. In their work, a machine link was modeled as a 
vibrating beam in an infinite rigid baffle, and the Rayleigh integral was used to calculate the 
radiated noise. The major advantage of using the Rayleigh integral is its solution efficiency 
because the sound pressure can be obtained by direct integration of the known normal 
velocities. Certain simple machine elements may be modeled well by such treatments. 
However, the assumptions required in order to use the Rayleigh integral are rarely met by 
realistic vibrating structures. 

The acoustic finite element method has been used successfully in predicting interior 
noise in machines and structures in which the acoustic field is calculated within an enclosed 
volume, such as printer enclosures and vehicle cabins. Small cavity enclosures treated with 
acoustical materials, sound sources, and apertures were modeled using the FEM by 
Bernhard and Takeo [5]. The sound pressure and sound intensity inside the cavity were 
predicted. The sensitivity of two acoustic design objective functions, the radiated sound 
power through apertures and the total energy in the cavity, to the surface acoustic 
treatments were also calculated. Sung and Nefske [6] used a coupled structural-acoustic 
finite element model to predict vibration and noise in vehicle cabins. The predicted 
structural response and sound pressure were verified by experiments. For exterior 
problems, however, the FEM encounters difficulties such as where to stop the domain 
discretization and requires enormous computational effort because a three-dimensional 
acoustic field must be discretized. 

The boundary element method requires substantially less modeling and 
computational effort for exterior problems because only the boundary needs to be 
discretized, rather than the entire acoustic domain as with the FEM. Termination of domain 
discretization and attendant numerical closure, problems commonly encountered when 
using the domain methods, are not encountered when using the BEM. Another advantage 
of the BEM is that unknown variables on the surface are found directly without having to 
solve for the values at other points in the interior or the exterior region. Further, the 
unknown variables, whether interior or exterior to the domain of interest, may be found at 
any desired set of points using the BEM surface data. 

Various researchers have verified the radiated noise predicted by the BEM by using 
spheres, cylinders, boxes, etc., where analytical solutions exist [7-9]. The prediction of 
noise using the BEM and the Rayleigh integral equation from measured vibration has also 
been verified by sound pressure measurements in a semi-anechoic chamber [10]. 
Oppenhiemer and Dubowsky used the FEM and the BEM to predict the sound power and 
sound pressure of a machine-like enclosure. The predicted sound power and sound 
pressure were then validated by experimentation. In their experiments, the sound pressure 
measurements were made in an anechoic room; the sound power measurements were 
conducted in a reverberant room. The sound power levels were computed from an average 
of sound pressure level measurements using the diffuse field idealization. Single frequency 
excitation was used for the acoustic measurements. Such excitations may not excite 
enough room modes to approximate a true diffuse field [11]. 

Another method used in acoustics is statistical energy analysis (SEA) [12, 13, 14]. 
The SEA may be applied to structural-acoustical problems. Using the SEA, a mechanical- 
acoustical system is divided into components such as plates, beams, and acoustic spaces. 
Linear energy balance equations that relate the average modal energy (energy per mode) 
contained within the components to the dynamic coupling between components are written 
and solved for the modal energy [12]. The modes of vibration that are of interest are those 
which correspond to the natural frequencies of the uncoupled sub-system which lie in the 
bandwidth under consideration. Response levels are related to modal energies, and power 



flow is related to the coupling. This approach leads to a series of algebraic equations, the 
number of which depend upon the number of bandwidths in the frequency range of 
interest. For the SEA to provide an accurate representation of the system, the system must 
meet well-defined conditions. First, there must be several resonant modes in the frequency 
range of interest. Second, loose coupling must exist between the components. Third, the 
system must be divisible into components for which coupling and modal energy 
expressions are known. 

The advantage of the SEA is its light computational burden. Systems are broken 
down into a few components rather than numerous finite or boundary elements. Also, the 
phase of the response does not need to be considered. Due to its simplicity, the SEA can 
also be used to indicate trends due to parameter variations. Cole, et al. used the SEA to 
study the noise reduction of an idealized cabin enclosure [14]. The attenuation, or noise 
reduction, of a rectangular steel box in a diffuse sound field was predicted using the SEA. 
Experimental measurements were performed in a reverberation chamber which was 
supplied with broadband white noise. The attenuation was measured in one-third octave 
bandwidths having center frequencies in the range of 63 Hz to 20 kHz. The results from 
the SEA agreed well with actual measured values. 

While SEA has well-recognized advantage, the method also has its weaknesses. 
Systems with complex geometries or low modal densities do not meet the requirements of 
the SEA. Likewise, the SEA cannot predict exact temporal or spectral response. Since it is 
a statistical approach, the SEA works well at high frequencies, but is not accurate at low 
frequencies [ 14]. For low frequency applications the finite element and boundary element 
methods are more appropriate. 

The conclusion drawn from this literature review was that the BEM is the best 
prediction tool to apply to problems having low to medium frequencies with responses 
composed of only a few modes. A BEM code BEMAP was used in this study. BEMAP 
calculates the pressure and sound intensity at field points in the near and far field of the 
sources, as well as sound pressure and sound intensity of the source itself. The sound 
intensity is integrated over the source to yield the sound power. While all of these 
quantities can be validated by measurements, some quantities are more accurate and suitable 
than others for experimental verification. 

For example, sound pressure is a quantity that is dependent on the acoustic 
environment, and has no simple relationship to sound power, except under carefully 
controlled conditions based on special assumptions made about the sound field. When 
trying to quantify human response to sound, such as noise annoyance or the risk of hearing 
loss, sound pressure is the obvious quantity to measure. Sound intensity, which was used 
in the present study, however, has a simple relationship with sound power and can in 
principle be measured in any sound field. This property allows all the measurements to be 
conducted directly in situ, no expensive anechoic room or reverberant room is needed. 
Because the sound intensity is a vector with direction, it also can be used to locate the 
position of the noise sources. 

The sound intensity method has previously been used in the research of helicopter 
transmission noise and vibration control. Atherton and Pintz [15] developed a Robotic 
Acoustic Intensity Measurement System (RAIMS) consisting of a two-channel spectrum 
analyzer (FFT), a desktop computer, an instrumentation robot arm, a digital control unit for 
the robot, and an acoustic intensity probe. This system was used to measure the sound 
field for different gears at various speeds and loads. It was found that gear tooth profile 
had a major effect on measured noise. Speed and load also have an effect on noise [15]. 



In the present research, a combined numerical and experimental validation of 
methods to predict structural vibration and radiated noise is presented. The modal 
superposition method was used to predict the vibration that was validated by experimental 
modal analysis. A modified Heimholte integral equation for bodies sitting on an infinite 
plane [16] was used to predict the radiated noise which was validated by the sound 
intensity method. Three types of results are presented for the total radiated sound power: 
(1) sound power predicted by the BEM model using measured vibration data; (2) sound 
power predicted by the FEWBEM model; and (3) sound power measured by the sound 
intensity method. 



CHAPTER 2 

BOUNDARY ELEMENT METHOD 

2.1      General 

The BEM is a numerical method used to solve a wide variety of boundary value 
problems. There are two approaches in the boundary element formulation: the direct 
boundary element method (DBEM) and the indirect boundary element method (IBEM). In 
the DBEM the problem is formulated in terms of the physical variables of interest, e.g., 
acoustical pressure and acoustical velocity. These variables are then solved directly from 
the discretized surface integral equations. In contrast, in the IBEM the problem is 
formulated in terms of a source density function, and a distribution of fictitious sources on 
the boundary is solved. Once the source solution on the boundary is known, the acoustic 
pressure or velocity at any boundary or field point can be determined. In the application of 
the BEM in acoustics, the DBEM corresponds to a numerical implementation of the 
Heimholte integral equation [8, 9, 17-22], while the IBEM is a numerical implementation 
of Huygen's principle [23-25]. In this research, only the DBEM was used. 

The mathematical formulation and practical application of the BEM are given in 
books by Brebbia [26], Brebbia and Walker [27], Brebbia, Teiles and Wrobel [28], and the 
work of Banerjee and Butterfield [29]. The application of the BEM to wave problems can 
be found in Shaw's work [30]. Some overall reviews and applications of the BEM for the 
solution of acoustic problems [8, 17-19] governed by the Heimholte equation for time- 
harmonic acoustic waves are available in the literature. All of these works utilized planar 
elements for the evaluation of the integral equation. 

Recently, Seybert, et al [20-22], proposed an enhanced BEM for acoustic radiation 
and scattering problems with several improvements over the otherwork [8, 17-19]. These 
improvements include: the systematic handling of both smooth and nonsmooth (e.g., at an 
edge or a comer) geometries, the removal of the singularity in the Green function and its 
normal derivative, and the introduction of quadratic isoparametric elements to obtain the 
numerical solution of the Heimholte integral equation. 

One potential shortcoming of the BEM is that the exterior BEM formulation has the 
well-known difficulty of nonuniqueness of the solution at certain characteristic frequencies 
[30]. These fictitious eigenfrequencies have no physical meaning for the exterior boundary 
value problem being solved which has a unique solution for all frequencies. Schenck [9] 
has shown that uniqueness may be achieved by using the Combined Helmholte Integral 
Equation Formulation (CHIEF) method. This method is to put additional points outside the 
acoustic domain to overdetermine the solution on the surface. The problem of 
nonuniqueness may also be treated analytically by forming a linear combination of the 
Helmholte integral and its normal derivative [7, 31]. Seybert and Rengarajan [32] recently 
conducted a systematic study using the CHIEF method to overcome the nonuniqueness 
problem. The method was successfully tested for a variety of radiation problems with 
different geometries and boundary conditions at different frequencies. 

The interior BEM formulation, however, does not suffer from the nonuniqueness 
problem described above for exterior problems. All eigenfrequencies for the interior 
problem are real and have a physical interpretation. 



2.2      Formulation 

2.2.1   The Linearized Wave Equation 

Consider the propagation of small-amplitude acoustic waves in a stationary, 
inviscid, nonheat-conducting, homogeneous fluid medium. Let p0, p0 be the density and 
pressure of the fluid at rest, and denote the excess pressure and particle velocity at time t by 
p and u, respectively. From the linearized Euler's equation 

p. -fr —VP, (2-i) 

and by the linearized continuity equation 

-ff-    =-p0c
2V.u, (2.2) 

where 

c2^-52-, (2-3) 
Po 

in which c is the adiabatic speed of sound and Y is the ratio of the specific heats of the gas 
measured at constant pressure and constant volume. Equations (2.1) and (2.2) can be 
combined to yield a single differential equation 

c at V2P - -V ^r • (2-4) 

Equation 2.4 is the linearized, lossless wave equation for the propagation of sound in a 
fluid. If the acoustic quantities have a time harmonic behavior, exp(icot), Eq. (2.4) reduces 
to the Helmholtz equation or the "reduced" wave equation 

( V2 + k2) p = 0, (2.5) 

where 



k = 
(0 

(2.6) 

k is defined as the wave number and w is the angular frequency. 

It is usually appropriate to describe the sound field in terms of a scalar velocity 
potential which relates to the acoustic pressure and particle velocity through the 
relationships 

p = icopo4> (2.7) 

and 

u = _ v<J>. (2.8) 

Therefore, the Helmholtz equation in terms of <J) is 

V2<J> + k% = 0. (2.9) 

2.2.2   Formulations for Free Space Problems 

In principle, the boundary integral equation formulation for the wave equation can 
be derived from Green's second identity 

(ipV2!))—4>vi|f)    = (VäH-*än-)ds' (2.10) 

in which (J> and iy are two sufficiently smooth scalar functions in V. The normal derivatives 
are defined as 

-^-=Vd>.n (2.11) 

and 



-f^-Viir-n, (2.12) on 

where n is the outward normal directed away from the region of interest, (j> is the field 

variable (velocity potential for acoustic problems), and ij; is the fundamental solution 
determined from 

V2
V + k2t|r = — 4TT5(P), (2.13) 

where 6(P) is the Dirac delta function at a point P. The solution of Eq. 2.13 is referred to 
as the free-space Green's function [33] and is given by 

■ikR 
e , (2.14) 

in which R = | P — QI is the distance between any spatial point Q and the singular point P. 

The Interior Problem 

Interior problems are governed by the Helmholtz equation where the acoustical 
region of interest, B, is enclosed by the surface, S, as shown in Fig. 2.1. Then, 

V2(J> + k24> = 0, inB (2.15) 

applying Green's second identity 

(VV24> — (frV^dV = 
B 

(vi-4>^)dS, (2.16) 
S 

where n is away from the acoustic domain.  The boundary integral representation of an 
interior problem is given by 

c°(PM>(P) = [ v (P.Q) gj| (Q) -|J CP,Q>KQ>]dS(Q) (2.17) 
s 



Figure 2.1    Schematic diagram of an interior acoustic problem . 



where C°(P) is 47T for P in B, 2% for P in smooth S and 0 for P in B', and B' is the domain 

exterior to the surface, S. In general, C°(P) is a function of the local geometry at P on a 
nonsmooth surface, S, and can be evaluated by [34] 

C°(P)    = — M>dS- (2.18) 

The Exterior Problem 

Exterior problems are governed by the Helmholtz equation where all the quantities 
are defined in B', which is outside of a given body, B, with surface, S, Fig. 2.2, i.e., 

V2(J) + k2<J> = 0, inB' (2.19) 

Using Green's second identity 

(yV2^ — <t)V2nr)dV = 
B' Soo+S 

<^-*g>, (2.20) 

and noting that 

^es-^ön")dS'0' (2.21) 

and using the Sommerfeld radiation condition [34], the boundary integral equation for an 
exterior problem is then reduced to 

c(P)<MP) = [ v (P.Q) ^ (Q) - H (p>QWQ»dS(Q)' (2.22) 

where C(P) is 47r for P in B', lit for p on smooth S and 0 for P in B. In general, C(P) can 
be evaluated by [34] 

10 
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Figure 2.2    Schematic diagram of an exterior acoustic problem, 
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C(P) = 4TT — l^>dS< (2.23) 

2.2.3   Formulation for Contact Problem 

For a body sitting on a infinite plane (Fig. 2.3), the boundary of the body S can be 
divided into two parts. The first part is Sc, which is in contact with SH ; the other part is 
S0, which is exposed to the acoustic medium B\ Then the boundary integral equation for 
acoustic radiation and scattering can be written as [16]: 

C(P)4>(P) = 
at> diu 

So 
KfrQ)  -fr<Q)-  önii(P.Q)4)(Q)]dS(Q) + 47r4,i(P), 

(2.24) 

where (J> is the velocity potential satisfying the Helmholtz equation V(}) + k(}) = 0inB' and 
Sommerfeld radiation conditions in the far field, n is the inward normal, (fo is the incident 

wave potential, and i|/H is the half space Green's function, which takes the form: 

VH = e-
ikr/r + RH(e-ikri/ri), (2.25) 

RH is the reflection coefficient of the infinite plane and ri is the distance between Q and the 
image point of P, with respect to SH. The reflection coefficient RH is equal to 1 for a rigid, 
infinite plane or -1 for a soft infinite plane. In the present study, the floor was considered 
rigid, thusRH= 1. 

The coefficient C(P) is still 4TT for P in B', and zero for P in B. For P being on So 
but not in contact with SH, C(P) can be evaluated by [16]: 

C(P) = 4;r 
So+Sc 

!<>. 
(2.26) 

For P being on So, and also in contact with SH, C(P) can be evaluated by [16]: 

C(P) = (1+RH)[27T 
SQ

+
SC 

i^>dS>- (2.27) 
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2.2.4   Numerical Implementation 

The numerical solution procedure for the BEM is divided into four steps. The first 
step is discretization of the boundary into boundary elements. The second step is numerical 
integration of the boundary integral equation to form a system of algebraic equations. The 
third step is the solution of the system of equations to obtain the unknown boundary 
values. The last step is the solution of the field values, if desired, by quadrature of the 
known values on the boundary. 

In the standard BEM implementation, the boundary surface, S, is discretized into a 
number of elements and nodes. The number of elements were denoted by M and the 
number of nodes by N. If the singular point, P, is put at each of the N nodes alternately, N 
linear independent equations are obtained. Unlike the FDM or the FEM, in which the entire 
three-dimensional domain must be discretized, the BEM requires that only the boundary 
surface surrounding the body or cavity be discretized. If the domain is plane symmetric, 
only one-half of the surface has to be modeled. If the body is axisymmetric, a further 
simplification is achieved because the surface discretization can be accomplished with line 
elements [22]. In other words, only the generator of the body or cavity needs to be 
discretized. 

In the classical BEM, the surface is discretized into a number of planar surface 
elements, and the acoustical variables, ((> and <f>', are assumed constant on each element. 
This piecewise constant approximation has been used with good results [19, 24]. But a 
very fine mesh may be required to obtain an adequate representation for 4> andcf)'. 
Recently, the BEM has been improved by the use of quadratic isoparametric elements [20- 
22] in which quadratic shape functions are used to represent both the geometry and the 
acoustic variables within each element. The discretization scheme used herein involves 
quadratic isoparametric surface elements of either quadrilateral or triangular shape for a 
three- dimensional body or cavity (Fig. 2.4(a)). The quadratic shape functions allow the 
use of fewer elements to approximate a curvature surface. At the same time, they also give 
more accurate approximation for the geometry and the acoustic variables. For a body or 
cavity which is axisymmetric, the generator of the body or cavity may be simply modeled 
by three-node isoparametric line elements [22, 35]. 

The global Cartesian coordinates Xj (i =1, 2, 3) of any points of an element are 

assumed to be related to the nodal coordinates, X{a, by 

Xi(?)=lNa(5)Xiccf a- 1,2,..., 6 or 8 (2.28) 
a 

in which Na(x) are second order shape functions of the local coordinates (£) = (X\, £2) 

(-l^l^l), Figure 2.4(b). Equation (2.28) is an implicit transformation in which a surface 
element is mapped into a plane square or a plane equilateral triangle. 

Next, the same quadratic shape functions were used to interpolate the boundary 

variables d) and d>' (= -*p-). On each element, it was assumed on 

14 
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Figure 2.4     (a) Curvilinear quadrilateral and triangular elements 
(b) Corresponding parent elements . 
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a 
(2.29) 

and 

a 
(2.30) 

where (j>ma and 4>mot' are the nodal value of 4> and 4>\ respectively. For an interior 
problem, evaluating Eq. (2.17) over the discretized surface S, substituting equations (2.28) 
- (2.30) into equation (2.17) for each point P and element Sm combination, we obtain 

m   a m m a 
(2.31) 

where 

mj gjN0(5)J(M, 
>m 

(2.32) 

mj VNa(5)J(5)d5, 
>m 

and 

(2.33) 

mj #(——)J(5)d?, 
sm

ön RF 
(2.34) 

where a = 1, 2,..., 6 or 8, j is a global node number and Rj(0 is the distance from node j 

to every point, Q, on element m. Sm is the area of the mth element and J(£) is the Jacobian 
of the isoparametic transformation 

J(0- 
ÖX ÖX 
    X        

es,     es« 
(2.35) 
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where x is the position vector of the point Q. The unit normal to the surface, S, can be 
evaluated as 

öx        dx 
  x     

n ^ A (2.36) 
J«> 

Hence, whether the surface is axisymmetric or fully three-dimensional, for a total 
number of nodes, N, a system of N simultaneous algebraic equations in terms of the 
unknown, 4> and <(>', is produced. Eq. (2.31) then can be written in matrix form 

[A] {<H-[B] if], (2.37) 

where the elements in matrices A and B are obtained by collecting terms from Eq. (2.31). 
For a well-posed boundary value problem, either (j> or 4>' is known on the boundary, the 
matrix form can be reduced to 

[K]{a} = {f}, (2.38) 

where [K] is a N*N square, fully populated, nonsymmetric matrix of boundary element 
coefficient, {a} is the unknown vector (either {(}>} or {<}>'}) and {f} is the known vector on 
the boundary. The unknowns on the boundary can be found by solving Eq. (2.38), and 
the field point velocity potential can then be found by using Gaussian quadrature. 

For numerical implementation of the exterior problem given by Eq. (2.22), using 
the same procedure as for the interior problem can yield 

I  I»Ä4Wa + [4»-ISiU1*|"IIbft<,,ma. (2.39) ma
J m     J     J    m a       J 

Note that the normal used to evaluate a, b, and c in equations (2.32) to (2.34) is opposite to 
that for an interior problem. 

In order to obtain an accurate BEM solution, the elements of the coefficient matrices 
[A] and [B] in Eq. (2.37) must be evaluated accurately. These calculations include the 
evaluation of Eqs. (2.32) to (2.34) by an appropriate numerical integration scheme. The 
accuracy of these calculations depends on the number and size of the elements and the type 
of integration and the number of integration points used. The determination of the elements 
of the coefficient matrices [A] and [B] involves the evaluation of integrals of the type [34] 
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Wj N« (5) Kmj (Pj, Q(?)) J(0 dt (2.40) 
>m 

where P; is a boundary node at which the integral is evaluated, Q(£) is the variable 

boundary point, and Kmj (Pj, Q(Q) is the kernel function, either y or tf. Apparently Kmj 

has a singularity (i.e., 1/R for y, 1/R2 for tf) when Rj(O=0, which will occur when Pj € 

Sm. Therefore, special care must be taken to remove such singularity.   In general, 

evaluation of equation (2.40) may have two cases. In the first case, Pj£Sm, i.e., point Pj 
is not on the element under consideration. Therefore, the integral is nonsingular. Eq. 
(2.40) can be evaluated using a standard Gaussian quadrature formulation. 

For the second case, Pj € Sm, i.e., the point Pj is on the element under 

consideration. The removal of the 1/R and 1/R2 singularities can be achieved by 
performing the polar coordinate transformation [34]. By changing to a local polar 
coordinate system (R, 8), in which the origin is selected at the point where the singularity 

occurs, the element of area dS becomes RdRdO. For Kmj (Pj, Q(£)) «* 0(1/R), it is 
obvious that the singularity is removed because the extra factor, R, produced by the polar 
coordinate transformation (the 'O' means that the convergence is of the order contained in 
the parenthesis). For Kmj (Pj, Q(5)) = H»\ note that Kmj (Pj, Q(g)) is 0(1/R2 ) • dWdn, 

or Kmj (Pj, Q(O) «* 0(1/R) since dR/dn is O(R). Again, this singularity is removed. 
Hence, the integral in Eq. (2.40) can be calculated using the regular Gaussian quadrature in 

both R and 6 directions. 

2.2.5 Interpolation Technique Used in the BEM 

Although the BEM is a very efficient numerical technique for acoustic analysis for a 
single frequency, it may lose its advantage for a multi frequency run. The main reason is 
that the integrals in Eqs. (2.32) and (2.33) are frequency dependent. For each different 
frequency, all the components in the coefficient matrix [K] and the right hand side vector 
{f} need to be re-calculated. The procedure will be very time consuming if solutions over a 
wide frequency spectrum are required. 

Recently, a frequency interpolation technique has been proposed by Schenck and 
Benthien [36] for multi frequency analysis in their acoustic BEM code. Only constant 
elements are used in Ref. [36]. The concept was expanded to isoparametric elements in the 
BEM code used in the present study [37]. It can be seen from Eqs. (2.32) and (2.33) that 
both amj and bmj may vary rapidly with frequency due to the kernel e" . The rapid 
variation with frequency can be smoothed out by premultiplying Eqs. (2.32) and (2.33) by 

a factor, e      , that is 

ä    • = eikr amj   e ^Na(OJ(5)d?, (2.41) 
Sm 

18 



and 

h    • = eikr Dmj    e VNa(5)K0d5, (2.42) 
>m 

where r is the distance between P and the centroid of the element, Sm. Then, linear 
interpolation between two reasonably spaced frequencies can be performed on the basis of 
amj and bm;. After we obtain the am; and bmj vectors at a new frequency through 
interpolation, the a  {and bm4 vectors at that frequency can be obtained immediately by mj mj 

_    =P-ikr -   . 
amj   e       a mj» (2.43) 

and 

bmj = e_1     b mj» (2.44) 

where the operation is simply the inverse transformation of Eqs. (2.41) and (2.42). 
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CHAPTER 3 

ACOUSTICAL ANALYSIS OF GEAR HOUSING VIBRATION 

As discussed in Chapter 1, transmission noise is an important component in the 
total noise radiated into the cabin of a helicopter. Transmission noise reaches the cabin by 
two primary paths: a structural path by which vibrational energy is transmitted through 
transmission mounts and load-carrying members to the cabin walls, and a direct radiation 
path in which sound radiated from the transmission excites the cabin wall or passes into the 
cabin through openings. The relative importance of these paths depends on the specific 
design of the helicopter and the location of the transmission. 

In this part of the present research, the direct radiation of sound from the 
transmission was of interest. Sound radiated by the transmission is a function of the forces 
applied to the transmission, the structural properties of the transmission, and the radiation 
efficiency of the transmission. The vibration response of the transmission may be 
described by a superposition of the modes of vibration of the transmission. It is, therefore, 
important to know the modes of vibration and the radiation efficiency of these modes. In 
this study, the vibrational modes of the transmission were measured using experimental 
modal analysis. The boundary element method (BEM) was used to calculate the acoustic 
field produced by each mode of vibration. The BEM is used to calculate the sound 
pressure and sound intensity distributions on the surface of the transmission, the far field 
sound pressure directivity of each mode, and the relative sound power and sound radiation 
efficiency of each mode of vibration of the transmission. 

3.1 Modal Analysis Experiments 

As a means of understanding the relationship between noise and gear design 
parameters, NASA Lewis Research Center developed a gear noise test rig, as shown in 
Fig. 3.1(a). The detail of the gearbox was shown in Fig. 3.1(b). In the present study, the 
gearbox was analyzed using experimental modal analysis to determine the modes and 
natural frequencies of the gear housing [38]. Eight modes were found in the frequency 
range 650-3000 Hz. Two of the gear housing modes are shown in Figs. 3.2 and 3.3. 
Because the top of the gear housing is not as stiff as the sides, most of the modes resemble 
classic plate modes of the top surface. The mode in Fig. 3.2, for example, looks very 
much like a 1,1 plate mode, while the mode in Fig. 3.3 is similar to a 4,1 mode. All but 
one of the modes (occuring at 2000 Hz) exhibited dominant plate modes of the top surface. 

3.2 Acoustical Analysis of Gear Housing Modes 

3.2.1   Introduction 

The BEM was used to analyze the acoustical properties of the modes of vibration of 
the gear housing. The BEM has been used previously to analyze the modes of vibration of 
engines [39, 40], to model the sound fields inside of vehicles and aircraft, and to predict 
the performance of mufflers and silencers [41, 42]. 

As discussed earlier, the BEM is based on the Helmholtz integral equation 

C(PM>(P)   = [ V (P,Q) ^ (Q) - ^ (P,Q>KQ)]dS(Q), (3.1) 
s 
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(a).    Layout 

(b).    Detail of gearbox 

Figure 3.1      NASA gear noise rig 
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Figure 3.2   658 Hz mode of the transmission housing . 

Figure 3.3   2722 Hz mode of the transmission housing, 
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where C(P) is Ait for P in the field around the housing and is 2n for P on the surface, S, of 
the housing. The Heimholte integral equation is used to determine the <t> at any point, P 
(see Fig. 3.4) in the acoustic medium surrounding the gear housing or on the housing itself 
as a function of the normal velocity of vibration v of the housing. 

Equation (3.1) states that the velocity potential, (j> (or pressure p), at a point in the 
acoustic medium may be found by summing up (integrating) two terms over the entire 
surface S of the housing, one involving the vibration velocity v on the surface of the 
housing and the other involving the velocity potential <J> (or pressure p), on the surface of 
the housing. However, the pressure on the surface of the housing is not known initially 
and must be determined from solving Eq. (3.1) by considering point P on the surface S. 
Once this is done, Eq. (3.1) may be used to determine the pressure at any point in the 
medium. 

3.2.2   Sound Intensity and Sound Power 

Once both {v} and {p} are known on the surface S (i.e., at every node), the 
pressure at any point in the near field or far field may be determined from a discretized form 
of Eq. (3.1). Further, the sound intensity I at every point Q on the surface may be 
calculated from 

I(Q) = Re{p(Q)v*(Q)}/2, (3.2) 

where Re denotes the real part of the expression in parentheses and * denotes the complex 
conjugate. Intensity is the sound power radiated per unit area of the transmission; the total 
radiated sound power is found by integrating the intensity over the surface S: 

W = I(Q)dS(Q). (3.3) 
S 

3.2.3   Sound Radiation Efficiency 

The radiation efficiency, a, is the ratio of the sound power radiated by a vibrating 
structure to the sound power that would be radiated by an equivalent flat piston vibrating in 
an infinite baffle: 

a ^-—,    . (3.4) 

where c is the speed of sound and <v2> is the mean square velocity of the surface S. 
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Figure 3.4   Gearbox with mesh showing BEM parameters. 
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3.2.4   The BEMAP Program 

In this study, the BEMAP program [43] was used to perform the acoustical analysis 
described above. BEMAP is represented schematically in the flow chart shown in Fig. 
3.5. The input to BEMAP is the surface geometry of the structure (the transmission), the 
vibration of the structure, and the frequency of vibration. The vibration data may originate 
from modal analysis experiments, as in the present study, but analytical vibration data, 
e.g., from finite element analyses, and the forced vibration data, may also be used. The 
vibration data may be normalized, as in the case of mode shapes, or absolute, as when the 
data is obtained from tests or from finite element, forced vibration models. Regardless of 
the source of the vibration, the magnitude and phase of the vibration at a discrete number of 
surface points (nodes) must be provided. The spacing of the nodes depends on the 
variation of the vibration data on the surface, the shape of the surface, and the frequency. 

To simplify the transfer of vibration data and surface shape into BEMAP, a number 
of software interfaces have been written. An interface from an experimental modal analysis 
software package was used in the present study to import the grid point coordinates and 
modal data, e.g., Figs. 3.2 and 3.3, into BEMAP. Similar interfaces have been developed 
for importing vibration data from several popular finite element programs. 

The output from BEMAP is the sound pressure and sound intensity on the surface 
of the structure, the sound power radiated by the structure, the radiation efficiency of the 
structure, and the sound pressure at any point in the acoustic field surrounding the 
structure. It should be noted that when the vibration of the surface {v} is normalized (i.e., 
a mode shape), the sound pressure and sound intensity determined in Eq. (3.1) and Eq. 
(3.2) are relative values. In this case, the relative sound pressure and sound intensity 
distributions on the surface may be used to understand how a given mode radiates sound 
energy (i.e., which regions of the surface are responsible for radiation). 

The radiation efficiency a Eq. (3.4), is a function of the mode shape and the 

frequency of vibration. Even though a mode shape is a normalized vibration, a is an 
absolute value; specifically, it is a property of the mode. Therefore, the radiation efficiency 
may be used to compare the sound-radiating characteristics of different structural modes. 

3.3      Results 

3.3.1   Transmission Housing Modes 

To illustrate how the acoustical analysis described above may be applied to 
structural vibration, the two transmission housing modes in Figs. 3.2 and 3.3 are used as 
examples. In mode shown in Fig. 3.2, the 658 Hz mode, the top, front and rear surfaces 
of the transmission housing are vibrating in-phase (i.e., outward) with one another, while 
the two end surfaces are vibrating in-phase with each other (i.e., inward) but out-of-phase 
with the other three surfaces. (The bottom of the housing was much thicker than the other 
surfaces, and was rigidly attached to the frame supporting the transmission, therefore, it 
had negligible motion. Throughout this paper, the vibration of the bottom surface and the 
support frame are neglected.) 

In the mode in Fig. 3.3, the 2722 Hz mode, most of the deflection is in the top 
surface of the transmission, with a small amount of deflection on the ends and virtually no 
motion on the front and rear surfaces. Considered as a plate, the top surface is vibrating in 
a 4,1 bending mode. 
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Figure 3.5   Inputs and outputs for the BEMAP program , 
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3.3.2 Sound Pressure and Sound Intensity Distributions 

The relative sound pressure level distribution on the surface of the transmission for 
the 658 Hz mode (Fig. 3.2) is shown in Fig. 3.6. The relative sound pressure level varies 
from the highest value where the deflection is at maximum (near the center of each surface 
of the housing) to the lowest value at the vertical edges of the housing, a total variation of 
30 dB. Each of the color bands in Fig. 3.6 represents a 3.5 dB change in sound pressure 
level. 

The relative sound intensity distribution of the 658 Hz mode is shown in Fig. 3.7. 
By viewing the sound intensity distribution, one may see the "hot spots" where sound 
energy is radiated from the housing. Because the sound intensity is the sound power per 
unit area, it is a better indicator than the sound pressure level of the sound energy radiated 
by the mode. For example, the right end of the housing does not contribute as much to the 
total sound power as the top surface, as seen from Fig. 3.7. However, the opposite 
conclusion would be drawn from looking only at the sound pressure distribution in Fig. 
3.6. 

The relative sound intensity distribution for the 2722 Hz mode (in Fig. 3.3) is 
shown in Fig. 3.8. (Recall that this distribution cannot be compared quantitatively to the 
intensity distribution in Fig. 3.7 because each mode shape is normalized by the maximum 
deflection ofthat mode.) It is clear from Fig. 3.8 that there is a broad region on the top 
surface of the housing where sound energy is radiated. This is in spite of the appearance of 
the mode, Fig. 3.3, which would indicate that considerable cancellation should occur near 
the center of the top surface. 

3.3.3 Radiation Efficiency 

The radiation efficiencies of the eight transmission housing modes are shown in 
Fig. 3.9. As seen, all of the modes are very efficient radiators of sound. An approximate 
analysis using plate theory by Wallace [44] can be used to check the results in Fig. 3.9. 
This theory is strictly valid only for simply-supported plates in an infinite baffle, which is 
based on the ratio k/kb of the acoustic and bending wave numbers.  The acoustic wave 

number k = cc/c and the bending wave number is 

kb = [(m7i/a)2 + (n:r/b)2]1/2, (3.5) 

where a and b are the dimensions of the plate and m,n is the mode number. When k/kj,« 
1, the radiation efficiency is much less than unity and highly dependent on mode number 
m,n. When k/kb * 1, the radiation efficiency is less strongly affected by the mode number 
and approaches unity. Above k/k,, = 1, the radiation efficiency of each mode reaches a 
maximum value of between one and two and then decreases monotonically to unity for k/kb 

» 1. 

In Fig. 3.10 the radiation efficiencies of seven of the eight transmission housing 
modes are compared to the radiation efficiencies of a rectangular plate [44] having the same 
dimensions as the top surface of the transmission housing. (The 2000 Hz mode was 
omitted as it did not exhibit a dominant plate mode on the top surface of the transmission 
housing.) The plate mode number is shown for each of the data points in Fig. 3.10. It 
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may be seen from Fig. 3.10 that the wave number ratio for all of the modes lies between 
0.75 and 1.35, the region where the radiation efficiency is the highest. 

The two sets of data in Fig. 3.10 follow the same trend. The data in Fig. 3.10 
illustrate that the transmission housing is dominated by modes which resemble those of a 
flat panel. However, because the top surface of the housing is not baffled, and because 
there is radiation from the other surfaces of the transmission, there are some discrepancies 
between the theoretical data for a baffled plate and the gearbox data. 

3.4 Structural Modfication and Noise Control 

Structural modification of the transmission housing is a logical method of noise 
control. In general, modifications which stiffen a vibrating structure would tend to reduce 
vibration because the natural frequencies are pushed to higher frequencies where, 
presumably, the spectrum level of the forces exciting the structure is less. However, this 
simplistic approach ignores the effect of radiation efficiency on the radiation of sound from 
the vibrating structure. It is clear from Eq. (3.4) that the sound power is directly 
proportional to the radiation efficiency. Thus, while modification of the structure may 
reduce the mean-square vibration <v>2 the radiation efficiency may increase. 

Consider the effect of a straightforward modification in which the thickness of the 
transmission housing is altered. This would have the effect of changing the natural 
frequencies of the modes without materially altering the mode shapes. (A similar effect 
may be obtained by changing the composition of the transmission housing material.) To 
see the effect of such a modification, the radiation efficiency of each mode is determined at 
frequencies above and below the measured value. These data are plotted in Figs. 3.11 and 
3.12 for the 658 Hz and 2722 Hz modes, respectively, in which the measured natural 
frequency of each mode is represented by the filled data symbol. 

The radiation efficiency of the 658 Hz mode increases with frequency, as shown in 
Fig. 3.11. Thus, a thicker transmission housing will radiate more noise if the reduction of 
vibration level does not offset the increase in radiation efficiency. It is also possible that 
thickening of the transmission housing may move a mode with a high radiation efficiency 
from a frequency where it is not excited to a new frequency (e.g., a gear mesh frequency) 
where it may radiate considerably more sound energy. 

By contrast, the radiation efficiency of the 2722 Hz mode is almost independent of 
frequency, as seen in Fig. 3.12. Thickening of the housing will not increase the radiation 
efficieny of this mode and, unless the new frequency coincides with a gear mesh 
frequency, the sound energy radiated by this mode will decrease. 

3.5 Summary and Discussion 

Transmission housing vibrational modes may be analyzed acoustically to determine 
their impact on the sound energy radiated by the transmission. The BEM may be used to 
determine the sound intensity on the surface of the transmission housing and the radiation 
efficiency of each mode in order to assess the importance of each mode acoustically. The 
BEM may also be used to examine "what if strategies for structural modification such as 
altering the thickness or changing the material composition of the transmission housing. 

In this chapter, the BEM has been used to analyze the radiation characteristics of the 
structural modes of the gear test rig developed by NASA. The radiation efficiency of each 
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mode was determined and compared to the approximate values in [44], based on the plate 
radiation theory. 

Because the transmission housing modes are similar in appearance to those of 
simple rectangular plates, the plate radiation theory was partially successful in estimating 
the radiation efficiency of the transmission housing modes. The present approach of 
calculating the radiation efficiency of each mode using the BEM is superior because, unlike 
the plate radiation theory, the BEM makes no assumptions about boundary conditions, 
baffling or uniformity of the mode shapes. 
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CHAPTER 4 

VALIDATION OF FEM/BEM PREDICTED STRUCTURAL 
VIBRATION AND RADIATED NOISE 

4.1.     Introduction 

In this chapter, an experimental validation of FEM/BEM predicted structural 
vibration and radiated noise is presented. First, a FEM model of the vibrating structure 
was constructed using the commercial FEM software package ANSYS. Using this model, 
the vibration of the structure at each nodal point was predicted. Experimental model 
analysis data was used to check the validity of this model. The validation included 
comparison of the natural frequencies, comparison of the mode shapes, and comparison of 
the transfer functions at certain points of the structure. The natural frequencies derived 
from theoretical calculation were also compared with the experimental and FEM results. 
Once the FEM model was validated, it was used to determine the velocity and displacement 
of the structure at each nodal point in the frequency range of 100-500 Hz. 

Additionally, the nodal velocities or displacements of the structure can be 
determined by experimentation. In this research, an accelerometer was used to measure the 
acceleration of the structure at each nodal point. The velocity or displacement was then 
determined by integration once or twice. 

At this point, two sets of vibration data are available to evaluate the radiated noise: 
vibration data from the FEM model and vibration data from the experiments. These two 
sets of vibration data were used as input to predict the radiated noise using BEM. Two 
interface codes were written and used to transform the FEM predicted vibration data and the 
measured vibration data to the format needed for input into the BEM code BEMAP. 
BEMAP then calculated the total radiated sound power and radiation efficiency of the 
vibrating structure. Again, two sets of data were obtained; one was the total radiated sound 
power and radiation efficiency from the FEM-predicted vibration, the other was those 
predicted from measured vibration. 

Once the radiated noise was predicted, the final step was to validate it by 
experimentation. As discussed earlier, the total radiated sound power is used as the 
validation quantity. In the present study, the total radiated sound power was measured by 
the sound intensity method using a commercial sound intensity measurement system. To 
validate only the BEM portion of the prediction, the total radiated sound power predicted 
from measured vibration was compared with the measured total radiated sound power. To 
validate the entire FEM/BEM prediction process, the total radiated sound power predicted 
from FEM vibration was compared with the measured total radiated sound power. 

4.2      Sound Intensity Method 

4.2.1   General 

In ordinary sound measurements, a microphone is used to measure sound pressure. 
The sound pressure produced by a noise source depends not only on the sound energy 
radiated by the source, but on the environment in which the source is placed and the 
position of the microphone relative to the source. Thus, while being a useful quantity, 
sound pressure is not an adequate means to characterize a noise source. Since the sound 
power of the source is the rate at which the source radiates sound energy, the sound power 
is a characteristic of the source, and therefore, is a more meaningful quantity to use in 
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characterizing a noise source.   However, sound power cannot be measured, instead, it 
must be determined indirectly from other measurements. 

Sound power is a product of the average sound intensity over any surface enclosing 
the source, times the area ofthat surface. How to effectively determine sound power has 
been a fundamental problem in acoustics for decades. Until the sound intensity method 
was developed, sound power could only be determined in special acoustical environments, 
such as reverberation or anechoic chambers. In such environments there is a simple 
relationship that exists between sound pressure and sound intensity, and thus the sound 
power can be determined by measuring sound pressure. 

In ordinary sound measurements, a single microphone is used to measure the sound 
pressure. In the sound intensity method, a pair of closely-spaced microphones is used to 
measure the sound intensity at a point midway between the microphones. From a number 
of such measurements, the average sound intensity over a surface can be determined. If 
this surface totally encloses the noise source, the sound power is determined by multiplying 
the average sound intensity by the area of the surface. 

The idea of using two closely-spaced microphones to estimate the sound intensity at 
a point is not new. It has been suggested many times in the past half century. However, it 
was not until the last decade that the practical implementation of the sound intensity method 
became feasible with the introduction of the two-channel FFT analyzers. The main 
advantage of the sound intensity method (SIM) over other methods of determining sound 
power is that no special acoustical environment is required. This means that field 
measurements of sound power are now possible, and in most cases, an ordinary laboratory 
room or test chamber may be used. A second advantage of SIM is that measurements may 
be taken even when background noise is relatively high. A major rule to follow for the 
conventional sound pressure measurement to be valid is that the background noise level 
should be approximately 10 dB less than the level of the source. A valid sound intensity 
measurement can be made even when the background noise exceeds the noise level of the 
source. 

4.2.2   Modern Formulation for Intensity Measurement 

For a stationary ergodic signal, the acoustic intensity, Ir, at a location in the sound 
field in a given direction, r, can be expressed as [45, 46] 

Ir=E{p-ur}, (4.1) 

where E denotes the expected value and p and ur are the acoustic pressure and the 
component of the acoustic velocity in the r direction, respectively. For the complex 
pressure, p, and the complex velocity ur the sound intensity can be expressed as 

Ir=;jE{(p+p*)(ur+ur*)}, (4.2) 

where * denotes the complex conjugate. Equation (4.2) can be rearranged into 
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Ir = \ E{Re(p • ur) + Re(p • ur*)}, (4.3) 

where Re denotes the real part. 

In the frequency domain, when both p and ur are represented by their Fourier 
components, equation (4.3) becomes 

Ir(co) = \ E{Re(p(oo) • Ur(oo)) + Re(p(w) • u^oo)*)}, (4.4) 

where co is the angular frequency and, e.g., p(w) denotes the Fourier transform of p. 

Consider two closely spaced microphones with a separation distance, Ar, in the r 
direction. Let p, and p2 be acoustic pressure measured at the first and second microphone, 
respectively. From Eq. (2.1), the linear Euler's equation with no flow and no viscous 
dissipation, one has the basic pressure-velocity relation 

ur = 
Po 

^ dt, (4.5) 
or 

then the Fourier transform of u at a point midway between the microphones may be 
approximated as 

Uf(o3) = i(p2((o) — P^/PoArw. (4.6) 

where p0 is the density of air and i = (—1) 1/2. The Fourier transform of the pressure at 
the midpoint location may be expressed as 

p(o)) = ^(Pl(co) + P2(w)). (4.7) 

Substituting Eqs. (4.6) and (4.7) into Eq. (4.4) gives 

Ir(co) = [ E{Re(Pl((jo)) • Im(Pl(co)) — Re(p2(co)) • Mp^oo))} + 

E{Im(Pl(co) • p2((o)*)}]/2poArw, (4.8) 
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where Im indicates the imaginary part. For stationary and ergodic signals, 

E{Re(Pl(w)) • Im(Pl((D))} = 0, (4.9) 

and 

E{Re(p2(o))) • Im(p2(co))) =0 (4.10) 

and it follows immediately that the acoustic intensity spectrum is 

I/to) = E{Im(p1(u) • p2(w)*)}y2poAr(o 

= Im{G12}/2p0Arco, (4.11) 

where Gi2 is the cross spectrum between pj and p2. 

4.2.3   Phase Calibration 

In the sound intensity method, the sound intensity, Ir at a point in direction, r, is 
estimated by Eq. (4.11) 

I/oo) = Im{Gj2}/2pArco 

sind),') 
= |G12|  ^, (4.12) 

1Z  2poArw 

where d),2 is the phase angle between the microphone signals. From this expression one 

can notice that the error in the measurement of d> j 2 is a significant error source of the sound 
intensity method. So the phase mismatch between measurement channels must be very low 
(typically less than 0.5 degree) to ensure valid sound intensity measurements. Phase 
mismatch has two main sources: phase mismatch within the analyzer and phase mismatch 
between the microphones used in the measurements. In the present study, the phase 
mismatch within the intensity measurement package was less than 0.2 degree because every 
board set had been phase calibrated by the manufacturer. There are two ways to avoid the 
possibility of errors caused by microphone phase mismatch. One is to use a special set of 
"phase matched" microphones, or a phase calibration can be performed on microphones 
that are not phase matched. In the present study, the microphone phase mismatch was 
corrected by performing phase calibration. A specially designed phase calibration tube was 
used to calibrate the microphones. The microphones were mounted in one end of the tube, 
and a high-quality acoustic driver was mounted at the other end. Broadband random sound 
from the driver was used to determine the phase mismatch between the microphones. 
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4.2.4   The Sound Intensity Floor and Dynamic Range 

The "sound intensity floor", the smallest value of sound intensity that can be 
measured in a given measurement situation, depends on the sound environment and the 
phase mismatch of the measurement channels. The sound intensity floor, Lfioor»in 

decibels is given by [47 ] 

Lfloor (dB) = Lp — 10 lo8 (wAi/cAc})), (4.13) 

where Lp is the sound pressure level (dB re 20 uPa), c is the speed of sound, and Acj) is the 
phase mismatch between the measurement channels. 

The difference between the sound intensity level and the intensity floor is an 
indicator of the validity of the sound intensity measurement. Usually this difference should 
be larger than 5 dB. In the present study, in the frequency range 100-500 Hz, the 
difference is larger than 5 dB at lower frequencies to larger than 15 dB at higher 
frequencies. Reducing the reverberant sound field or the background noise will usually 
increase the difference between the intensity level and the intensity floor. 

For a plane wave sound field, or in the farfield of a source, the sound intensity level 
and the sound pressure level will have the same numerical value. Therefore, the "dynamic 
range" of sound intensity is the difference between the sound pressure level and the 
intensity floor, i.e., the last term in Eq. (4.13). Using a phase error of about 0.1 degree 
and a microphone spacing of about 50 mm, the dynamic range is about 24 dB at 500 Hz 
and 18 dB at 100 Hz. 

4.3      Measurements 

4.3.1 General 

The experiment discussed herein was designed to validate the vibration and noise 
prediction based on the FEM and the BEM. The experimental apparatus is shown 
schematically in Fig. 4.1. The structure is a rectangular box of overall dimension 11 inches 
* 12 inches * 11.75 inches with only the top plate being flexible; the other five surfaces 
are much more massive and stiffer than the top plate and are assumed to be rigid. The top 
plate is made of 1/16-inch aluminum, and the other five surfaces are made of 1/2-inch thick 
steel. Four strips of 1/7-inch square steel rod are used to attach the top plate to the edges of 
the four side plates in order to approximate clamped boundary conditions. 

4.3.2 Vibration Measurements 

A shaker was mounted inside the structure to excite the top plate. A random 
excitation signal was used to drive the shaker. An impedance head was used to measure 
the applied force and the driving point acceleration. An accelerometer was used to collect 
the acceleration at various points on the top plate. The weight of the accelerometer was 
about 1.3 grams. To ensure that the force was applied in a direction perpendicular to the 
top plate, a stinger (Fig. 4.2) made of piano wire was connected the impedance head to the 
top plate. This connection was found to be very effective in minimizing the excitation in 
directions other than perpendicular to the top plate. The experimental apparatus was set on 
the floor to create a half-space radiation condition. 
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Piano wire 

Figure 4.2   Stinger used in the experiments. 
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A two-channel dynamic signal analyzer was used to collect calibrated acceleration 
data normalized by the input force of the shaker. Two charge amplifiers were used to 
amplify and condition the signals before they entered the analyzer. The data in the analyzer 
was then transferred to a personal computer and written to disk. A FORTRAN data 
acquisition code was used to perform the above process. The acceleration data was used in 
two ways: to validate the acceleration data predicted by FEM and as the boundary 
condition to the BEM program BEMAP. An interface program was written to transfer the 
vibration data into a standard BEMAP input file. 

4.3.3    Sound Intensity Measurements 

There are two ways to determine the sound power by sound intensity 
measurements. One is the sound intensity measurement at discrete points, the other is the 
sound intensity measurement by scanning. Since it is quicker and more convenient than 
fixed point measurements, scanning measurements were used in the present study. A 20 
inches * 20 inches * 20 inches wire frame was used to define the sweeping surface (Fig. 
4.3). In the scanning process, the signal analyzer was set to time-average the measured 
quantity over the period of each traverse, thus forming of a set of parallel line sweeps, 
which were then repeated with an orthogonal orientation, so that each section of the source 
was covered at least twice. 

A commercial intensity measurement package was used to measure the sound 
intensity and to calculate the total radiated sound power. The spacing between the two 
microphones in the probe was two inches. This spacing was chosen to assure that the 
frequency range in the present study was within the measurement frequency range of the 
probe. The measured sound intensity and total radiated sound power were normalized by 
the square of the input force, which was taken from the impedance head and acquired by a 
personal computer through the signal analyzer. This made it possible to directly compare 
the measured sound power with that predicted by the FEM/BEM model. 

Phase calibration was performed to correct the phase mismatch between the two 
microphones. A specially designed tube (Fig. 4.4) was used to perform the phase 
calibration. The microphones were mounted at one end of the tube, and a high quality 
acoustic drive was mounted at the other end. This acoustic drive was used to produce 
broadband random noise, which when traveling inside the tube, is a plane acoustic wave. 
If both microphones are mounted flush with the end flange of the tube (Fig. 4.5), the phase 
between the two measured signals is the phase mismatch of the microphones. This phase 
mismatch can then be used to correct the measured phase angle during the sound intensity 
measurements. 

4.4       FEM/BEM Models 

4.4.1   Finite Element Model 

The flexible top plate of the apparatus in Figure 4.1 was modeled using the FEM 
program. Clamped boundary conditions were used along the edge of the plate. One 
hundred quadrilateral quadratic thin-shell elements were used to model the top plate, and a 
unit force was applied to excite the plate. To model the mass below the force-sensitive 
crystal of the impedance head, the mass of the stinger, and the mass of two nuts, as shown 
in Fig. 4.6, another mass element was used. Two numbers were given as the values of the 
mass element. The first value was the mass described above, about 10 grams. This value 
was used to calculate the velocity or the acceleration, at each nodal points of the plate 
excited by the applied unit force.   The second value was the sum of the mass of the 
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Figure 4.6   Mass to be included in the FEM model 
for the calculation of mode shapes. 
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Figure 4.7 Mass to be included in the FEM model 
for the calculation of transfer functions. 

53 



following: moving part of the shaker, 18 grams; impedance head, 29 grams; and the mass 
of the stinger and two nuts. The total value was about 54 grams. This value was used to 
calculate the mode shapes of the FEM model. The reasons for using two values are 
explained below. 

The real system included the mass within the dashed line illustrated in Fig. 4.6, 
which amounted to about 54 grams. The mode shapes observed are the mode shapes of 
this system. To calculate the mode shapes, the mass within the dashed line must be 
included in the FEM mode, i.e., 54 grams must be used in the FEM model. However, 
when the transfer functions were taken, i.e., the accelerations were normalized by the 
applied force, the mass of the shaker was no longer apart of the system, as shown in Fig. 
4.7. 

On the other hand, the mass of the accelerometer (1.3 grams) was excluded from 
the FEM model. It was found that it had an insignificant effect on the structural dynamics 
in the frequency range of concern in this study. 

The modal superposition method was used to compute the harmonic response of the 
FEM model. Four modes were found in the frequency range 100—500 Hz. Table 4.1(a) 
shows the natural frequencies obtained from both the FEM model and the experiments. 
The error in the table is defined as 

Fr— F. 
Error = 

where Ff represents the frequency from the FEM model and Fe represents the frequency 
from the experiments. 

It can be noted from Table 4.1(a) that the predicted and measured natural 
frequencies of the system agree well in the frequency range 100-500 Hz. However, a 
small shift existed between the two sets of data; the largest shift happened at the fourth 
resonance with a relative difference of 4.4 percent. 

Table 4.1(b) shows the natural frequencies obtained theoretically [48] and those 
obtained from the FEM model (i.e., same as in Table 4.1(a)). The theoretical natural 
frequencies are for a clamped square plate with the same material and thickness as those 
used in the FEM model. In the FEM model, the dimension of the plate was 11 inches * 12 

inches. In the theoretical calculation, a dimension of 11.5 inches * 11.5 inches was used. 
Another difference is that the FEM model has a concentrated mass, while the theoretical 
model does not. These two differences, in dimension and nodal mass, are the major 
sources contributing to the differences of the natural frequencies. 

There was one resonance disappeared from the theoretical calculation. Apparently, 
this was due to the symmetry of the square plate. For a square plate, the second and the 
third mode (1-2 and 2-1) share the same natural frequency and mode shape. 

Figure 4.8 illustrates the frequency response function (acceleration normalized by 
the applied force) at the driving point of the top plate of the box. The difference between 
the experimental data and the FEM data is mainly due to a shifting of the natural 
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frequencies.  The largest shift of about 4.4 percent occurred at the fourth resonance, as 
discussed earlier. 

There are several factors which affect the magnitude of experimentally-obtained 
frequency response functions. The response of a mechanical system is a superposition of 
responses of the individual structural modes. The magnitude of response of a structural 
mode depends on its modal dynamic properties, the magnitude of its mode shapes at the 
drive point and the magnitude of its mode shapes at the receiving point. These factors 
combine in a multiplicative way to determine the modal response. Since a mechanical 
frequency response function is a superposition of modal responses, the accuracy of the 
modal dynamics and mode shapes predicted by the finite element method determines the 
accuracy of the structural response. 

The major reason for the shift of natural frequencies is that clamped boundary 
conditions are used in the FEM model for the top surface. The boundary conditions of the 
real system are not perfectly clamped, but lie somewhere between simple supported and 
clamped boundary conditions. Thus, the FEM model is stiffer than the real system. 

There are four modes in the frequency range 100—500 Hz. All of the mode shapes 
obtained from the FEM model share the same trend and shape with their counterparts from 
the experiment. For example, Fig. 4.9(a) is the mode shape of the first mode calculated 
from the FEM model; Fig. 4.9(b) is a photograph of a sand pattern which shows the mode 
shape of the first mode from experiments; likewise, Figs. 4.9(c) and (d) show mode 
shapes of the second mode from the FEM and the experiment, respectively. 

4.4.2   Boundary Element Model 

Two BEM models were used to model the vibrating structure. One was for the 
measured vibration, and the other for the FEM-calculated vibration. The mesh used for the 
measured vibration was somewhat more coarse (i.e., less conservative) than the one used 
for FEM vibration in order to reduce the amount of time needed to acquire the data. For the 
measured vibration, the top plate of the structure was modeled by 36 quadrilateral quadratic 
elements, resulting in 85 nodes at which the normal surface velocity was measured. These 
vibration data were measured using the accelerometer shown in Fig. 4.1. The velocities at 
the grid points along the edge of the top plate were set to zero since the clamped boundary 
conditions were used in the FEM model. The other five surfaces were each modeled by 36 
quadrilateral quadratic elements, as shown in Fig. 4.10(a). The total number of nodes for 
this BEM model was 650. All grid point velocities on the four side plates were assumed to 
be zero. This was only approximately true for the structure in the present study; a quick 
check showed that the magnitude of the vibration of the side plates was less than one tenth 
ofthat of the top plate. 

For the FEM calculated vibration, the BEM mesh consisted of 100 quadrilateral 
quadratic elements on the top plate, resulting in 341 nodes (Fig. 4.10(b)). The four side 
surfaces were each modeled by 35 elements (116 nodes). The bottom surface was modeled 
by 25 elements (96 nodes). The velocity of the nodes at the edge of the top plate were set 
to zero because clamped boundary conditions were assumed. The velocity of each point of 
the side plates and the bottom plate was also assumed to be zero. 

The general mesh requirement for a BEM model is that the largest dimension of the 
elements is less than 1/4 of the acoustical wavelength. For the highest frequency in the 
present study, i.e., 500 Hz, this meant that the size of the mesh should be less than 
approximately 17 cm. The dimension of the BEM mesh for the measured vibration in the 
present study was about 5 cm. The largest dimension of the BEM model for the FEM- 
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(a) 

(b) 

Figure 4.9 Comparison of predicted and measured modes of the plate: 
(a) first mode, FEM, (b) first mode, experimental, 
(c) second mode, FEM, (d) second mode, experimental. 
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Figure 4.10(a)      BEM model for measured vibration, 
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Figure 4.10(b)      BEM model for FEM predicted vibration. 
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predicted vibration was about 6 cm. Therefore, both BEM models were unnecessarily fine 
for the acoustical analysis. However, in the present study, the BEM mesh was made 
considerably finer to assure compatibility with the FEM mesh and the vibration 
measurement grid. 

4.5      Results 

Three kinds of results were obtained: measured sound power, numerical prediction 
of sound power, and prediction of sound power from measured vibration (Fig.4.11). 

Table 4.2 shows the peak values of three kinds of results mentioned above. Since a 
number of intensity measurements were made, averaged values and their ranges were given 
as the measured sound power levels. The measured sound power levels in Fig. 4.12 and 
Fig. 4.13 which will be discussed later in this chapter are two examples of the 
measurements. 

To validate the acoustic portion of the model, measured vibration data was used in 
the BEM model shown in Fig. 4.10(a). The total radiated sound power was also measured 
using the sound intensity method. The results are compared in Fig. 4.12. The shape of the 
measured and predicted sound power traces are very similar but the measured sound power 
is generally slightly greater than predicted values. 

The experimental data far below the peaks, i.e., the data below 90 dB, are not 
smooth and are generally higher than predicted values. There are three expected sources of 
error which will be most significant below the resonance peaks and which limit the 
dynamic range of the results: 1) In the BEM model we have assumed zero vibration from 
the sides of the box. Since the sides are much stiffer than the top and since the excitation is 
directly applied to the top rather than the sides, this is not a bad assumption. However 
there will still be some vibration and hence sound radiation from the sides. This will make 
BEM underestimate the noise radiation from the box. Also, since the sides will have their 
own modes of vibration, the measured sound trace will reflect these modes. This may 
account for the nonsmooth character of the measured sound below the four resonant peaks. 
2) Vibration data at the edge nodes of the mesh were set to zero (to agree with the clamped 
boundary conditions of the FEM model) while the actual box will have some motion at the 
edges. 3) Phase mismatch in the microphones used in the intensity probe introduces a 
residual intensity error which may become significant for frequencies at which the 
measured intensity is very low. 

The second, third and fourth peaks of the experimental curve in Fig. 4.12 are 
shifted slightly to the right. The reason for this shift is that the two measurements, 
vibration and sound intensity, were not made at the same time. In fact, the vibration 
measurements were obtained over a four-hour period. The system changed somewhat 
during the measurements. 

Figure 4.13 shows the total radiated sound power obtained by measurement (i.e., 
same as in Fig. 4.12), and that obtained by using the FEM and the BEM model in Fig. 
10(b). Except for a shift in the resonance frequencies (due to the FEM model, see Fig. 
4.8), the combined FEM/BEM model yields a good prediction of the radiated noise. 

The data in Figs. 4.12 and 4.13 are plotted in one-third octave bands in Fig. 4.14. 
The trends in the data are the same, with the greatest difference occurring in the 100 Hz 
one-third octave band. The likely reason for this is that the measurement of sound intensity 
at low frequencies is less accurate than at higher frequencies. 
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Figure 4.11   Flow chart for the results . 
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Table 4.3   Linear and A-weighted Total Radiated Sound Power Level 
in the Frequency Range 100-500 Hz 

Linear A-Weighted 

Sound Power From Experiment 120.5 (dB)       113.5 (dB) 

Sound Power Predicted from 
FEM Vibration 118.0 (dB)      109.5 (dB) 

Sound Power Predicted From 
Measured Vibration 119.0 (dB)      112.0 (dB) 
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Table 4.3 shows the total radiated sound power, both Linear and A-weighted, in the 
frequency range 100-500 Hz. The measured sound power has the highest value, and the 
combined FEM/BEM prediction yields the lowest value, with a difference of 2.5 dB and 4 
dB respectively, in linear and A-weighted senses. The four side surfaces are vibrating 
slightly and therefore radiate sound when the top plate is excited by the shaker, but only the 
motion of the top plate is included in the BEM model. Consequently, the BEM models 
underestimate the true sound power. 

4.6      Summary and Conclusions 

Analytical and experimental methods were used to validate the predictions of the 
boundary element method (BEM) acoustic computer code BEMAP. A finite element 
method (FEM) study was performed to predict the vibration of a simple rectangular box. 
Vibration measurements were compared with the FEM predictions. Sound power radiation 
from the box was predicted based on both the predicted and measured vibration. Sound 
power predictions were compared to measured values. The results show that: 

1) Numerical techniques such as the FEM and the BEM may be used to predict radiated 
noise accurately. 

2) Discrepancies between measured and predicted sound power are due to errors in the 
FEM model, error in the measurement of sound power and error in the measurement of 
vibration. 
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CHAPTER 5 

THE EFFECT OF STIFFENING BY ADDING 
A RIB TO THE STRUCTURE 

5.1 Introduction 

A natural extension of the researech discussed in the Chapter 4 is the study of 
ribbed structures. Ribbed structures have many practical applications in engineering. One 
major advantage of a ribbed structure is that they can enhance the strength or improve the 
thermal characterictics of the structure, without increasing the weight significantly. They 
are therefore commonly used on enclosures and as structural members of machinery. 

Maidanik conducted an analysis of a ribbed panel under acoustical loading [49]. 
His work was based on the assumption of equipartition of modal energy. On that basis, he 
estimated the radiation efficiency of the panels under acoustic loading. He found that 
ribbing increased the radiation efficiency of the panel and hence its coupling to the acoustic 
field. The results were validated by experimentation. The agreement between theory and 
experiments was shown to be satisfactory. 

If a structure is under a specific loading, either acoustic or mechanical, the 
vibrational pattern of the structure usually does not satisfy the assumption of equipartition. 
Thus most of the problems encountered may not be solved by the methods used in Ref. 
[49]. In these cases, finite element and boundary element methods provide a better way. 

The numerical and experimental methods used in the study of ribbed structures are 
the same as those used for unribbed structures, as described in Chapter 4. First, finite 
element models were constructed for ribbed structures. Before these models were used to 
predict structural vibration, they were validated by experiments. The boundary element 
method was then used to predict radiated noise from the FEM predicted vibration. The 
sound intensity method was used to measure the total radiated sound power in order to 
validate the predicted radiated noise. 

The total radiated sound power of a vibrating structure is proportional to the 
radiation efficiency and the space averaged mean square velocity of the structure. Ribbing 
increases the radiation efficiency, but on the other hand, reduces the amplitude of the mean 
square velocity. The change of the total radiated sound power is determined by what 
change is dominant: the increase of the radiation efficiency, or the decrease of the vibration 
level. 

Three cases were studied as shown in Fig. 5.1. The dimension of the cross section 
of the rib was 1/4 inch * 1/4 inch (Fig. 5.2). The length of the ribs varied, depending on 
the position of the ribs. For position (1), the length of the rib was 14.15 inches; for 
position (2), the length was 9.90 inches; and for position (3), the length was 10.80 inches. 
The ribs were made of aluminum, the same material as that for the top plate of the structure. 
In all three cases, the ribs were bolted to the top plate of the structure. 

5.2 FEM and BEM Models 

Finite element models were constructed for all three cases. The FEM models for 
the ribbed structures were combinations of the FEM model used for unribbed structure, as 
described in Sec. 4.4.1, and the FEM model for the rib. In the FEM, the element used was 
a 3-D tapered unsymmetrical beam. One characteristic of this element is that it can define 
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1/4" 

Figure 5.2   Dimension of ribs. 
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an offset constant of the centroid location of the section relative to the nodal point location. 
In the present study, the nodal points were on the top plate with an offset of 1/8 inch, as 
shown in Fig. 5.3. 

Boundary element models used for the ribbed structures were the same as those 
used for unribbed structures, as described in section 4.4.2. The BEM models were used to 
predict sound intensity and total radiated sound power. 

5.3 Vibration 

The vibration level of the ribbed structures was studied by the FEM. Again, the 
commercial FEM code ANSYS was used to calculate the response of the system being 
excited by a unit amplitude force applied to the top plate. A clamped boundary condition 
was applied to the edges of the plate. Figure 5.4 shows the space averaged mean square 
velocity of the four different cases. Since ribbing stiffened the structure, the resonance 
frequencies of ribbed structures were pushed higher. On the other hand, it is not clear from 
Fig. 5.4 if the overall level of the mean square velocity of the structures in the frequency 
range 100-500 Hz decreases. But if the average over the frequency range is taken, as 
shown in Table 5.1, it is apparent that ribbing decreases the vibrational level of the 
structure. 

Measurements of the vibration were also performed. Since the purpose of the 
measurement at this point was only to validate the FEM model, only a few points were 
selected for the measurement. The measured frequency response functions (FRFs) were 
compared with the FEM calculated FRFs. Figures 5.5 and 5.6 are the drive point 
frequency response functions for two different cases. Like the unribbed structure, the 
major discrepancy shown in the figures is the shift of natural frequencies. 

5.4 Radiation Efficiency and Total Radiated Sound Power 

Using the vibration data calculated by FEM, the radiation efficiency and total 
radiated sound power of the ribbed structures were computed by BEMAP. Figure 5.7 
shows the radiation efficiency of four different cases. One is for an unribbed structure, and 
the other three are for ribbed structures with the rib at three positions. It is clear that 
ribbing increases the radiation efficiency. Although the radiation efficiency of ribbed 
structures is less than that of the unribbed structure at some frequencies, the overall level 
of the radiation efficiency in the frequency range increases. 

Figure 5.8 shows the total radiated sound power of the four different cases. Like 
the space averaged mean square velocity, the peaks of the total radiated sound power of the 
ribbed structures were pushed to higher frequencies. The amplitudes of the first resonance 
are almost the same for each of the four different cases. For the second and the third 
peaks, the ribbed structures have much higher amplitudes, which will contribute 
significantly to the total radiated sound power in the frequency range 100-500 Hz. Table 
5.2 shows the total radiated sound power in the frequency range 100-500 Hz. It is noted 
that the increase of A-weighted total radiated sound power is larger than that of the linear 
total radiated sound power. This indicates that the high frequency content increased in the 
noise radiated by ribbed structures. This is in accordance with the fact that ribbing 
increases the resonant frequencies. 

The validity of the BEM predicted sound power was checked by experimentation. 
The sound intensity method was used to measure the total radiated sound power. The 
sweeping technique was used in the SIM. The steel rod frame that was used previously for 
the unribbed structure was used to define the sweeping surface.   Figs. 5.9 and 5.10 are 
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comparisons of the measured to the predicted total radiated sound power for two different 
cases. Since it is more difficult to model ribbed structures, the differences between the 
predicted and measured results in Figs. 5.9 and 5.10 are greater than that in Fig. 4.13. 

In the frequency range 100-500 Hz, the total radiated sound power for two cases 
was summed to obtain both linear and A-weighted sound power levels. The results are 
compared to the total radiated sound power of the structure without the rib, as shown in 
Table 5.3. The numbers in Table 5.3 confirm that ribbing increases the total radiated sound 
power as well as the high frequency content. 

5.5      Discussion 

For a simply supported plate vibrating at a flexural mode, when the frequency is 
such that the acoustic wavelength exceeds the structural vibration wavelength in both the 
long and short dimensions of the plate, i.e., ka < m7T, and kb < n;r, the maximum value of 
intensity is [50] 

Imax = 2p0c|Vmn|2(-^ ), (5.1) 
7TJrmn 

where V^ is an amplitude coefficient and m and n are integers. Now consider a single 
modal cell of area ab/mn in the absence of any other surface motion. Since the dimension 
of the cell has been assumed to be much smaller than an acoustic wavelength, the single cell 
may be modeled by a point source of volume velocity given by 

a/m   b/n 

= V™ (8ab/7r2mn), (5.2) 

Q= 2 Vmn    f        f       sin(m7rx/a)sin(n7Tz/b)dxdz 
Jo    J0 

Then, the farfield intensity at all points a distance, r, from the source is 

I-!?WE.2p0c|Vin„|2(-^-)2, (5.3) 
2p0c 7T3rmn 

where P(r) is calculated from [51 ] 

P(r,t) = jwpo ^ expLXtot - kr)]. (5.4) 

By comparing Eqs. (5.1) and (5.3) it is noted that the intensity that would be 
produced by one cell equals the maximum intensity generated by all the mn cells acting 
together. Because the intensity produced by one cell is independent of position, whereas 
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the intensity produced by the complete panel is less in all other directions than the 
maximum given by Eq. 5.1, the total sound power radiated by a single isolated cell would 
exceed that radiated by the whole panel. 

It can also be proven that the radiation efficiency of all panel modes at low 
frequencies is at most equal to, and mostly less than, that corresponding to the isolated cell 
vibration [50]. 

When ribs are attached to a panel, the panel is divided into many small panels, and 
therefore the total radiated sound power and the radiation efficiency are increased. In fact, 
for a simply supported panel under acoustical loading, the radiation efficiency at low 
frequencies is increased by a factor of (2Prib + PVP, where Prib is the total length of the rib 
and P the length of the panel perimeter [49]. 

In the present study, the same BEM model was used for the calculation of total 
radiated sound power and radiation efficiency of both ribbed and unribbed structures, i.e., 
the geometry change of the structure was not included in the BEM model. The difference 
of the BEM models between ribbed and unribbed structures was in the input data. This 
indicates that the distribution of the normal velocity or displacement of the panel plays a 
very important role in determining the radiation efficiency and total radiated sound power. 

Consider the idealized case presented in Fig. 5.11, which illustrates a one- 
dimensional vibration. The panel is vibrating sinusoidally. This means that adjacent 
internodal cells have volume velocities of equal magnitude and opposite sign, so that they 
actually cancel each other's ability to radiate sound. Consequently, only the half cells at the 
corners remain. Any distortion from the sinusoidal form, by attachment of a support or 
ribs, will affect this cancellation, thus increasing the radiation efficiency. This reasoning 
can be extended to the real two-dimensional case to provide a physical explanation of the 
increase of the radiation efficiency by adding ribs to structures. 
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CHAPTER 6 

SUMMARY, CONCLUSION AND SUGGESTION 
FOR FUTURE RESEARCH 

A combined numerical and experimental validation of methods was used to predict 
structural vibration and radiated noise. The finite element method (FEM) was used to 
predict structural vibration. The modal superposition method was used in the FEM to 
perform modal analysis and to calculate system response. Experimental modal analysis 
was used to validate the FEM results. The validation included three parts: validation of 
natural frequencies, validation of mode shapes, and validation of frequency response 
functions. 

The boundary element method (BEM) was used to predict radiated noise. The 
prediction was based on both predicted and measured vibration data. In order to 
approximate the situation in which the experimental apparatus was sitting on the floor, a 
modified Helmholtz integral equation for bodies sitting on an infinite plane was used in the 
present study. 

Although the BEM is a very efficient numerical technique for acoustic analysis for a 
single frequency, it may lose its advantage for a multifrequency run. In this research, a 
frequency interpolation technique was implemented in the BEM code BEMAP. By using 
this technique, the BEM retained its advantage for multifrequency acoustic analysis. 

The sound intensity method was used to verify the predicted noise radiated by the 
structure. Because sound pressure produced by a source depends not only on the sound 
energy radiated by the source, but also on the environment in which the source is located 
and the relative position of the microphone and the source, it is not an adequate means to 
characterize a noise source. On the other hand, sound power of the source is the rate at 
which the source radiates sound power, thus it is a more meaningful quantity to use in 
characterizing a noise source. By using the sound intensity method, sound power can be 
determined by integrating the intensity over the surface that encloses the noise source. 

In the sound intensity method, there are two factors that would affect the accuracy 
of measurements and thus determining the measurement frequency range. One factor is the 
high frequency finite difference error, the other is the low frequency microphone phase 
mismatch error. By choosing proper spacing between microphones, the high frequency 
finite difference error can be minimized. In order to eliminate the microphone phase 
mismatch error at low frequencies, a phase correction scheme was implemented. In this 
research, a specially designed equipment was used to measure the microphone phase 
mismatch, and was used to correct the measured phase angle between the two signals from 
two microphones. 

The numerical/experimental results show that numerical techniques such as the 
finite element method and the boundary element method may be used to accurately predict 
structural vibration and radiated noise. There are several error sources that may cause 
discrepancies between predicted structural vibration and radiated noise, and those derived 
by actual measurements. The sources of error include error in the FEM model, error in the 
measurement of sound power, and error in the measurement of vibration. If the vibration 
data (either measured or supplied by the FEM) are reliable, the acoustic BEM will yield 
accurate results for the predicted sound power. 

For structures with ribs, the space averaged mean square velocity is reduced since 
the system becomes more rigid after the ribs are attached. On the other hand, since ribbing 



damages the cancellation of internodal cells' ability to radiate sound, the radiation efficiency 
of ribbed structures is higher than that of unribbed structures. The increase of radiation 
efficiency usually offsets any decrease in the mean square velocity. Therefore, the total 
radiated sound power of ribbed structures is higher than that of the unribbed structures. 

Although good results have been shown herein for structures with relatively simple 
geometries, the methodology used in this study can be extended to structures having 
complex shapes. In fact, the primary utility of the present study is in its capability to 
investigate more general problems involving any arbitrarily shaped structures. 

Although several aspects in this area have been investigated, there are many more 
that remain to be explored. For example, coupling between structure and fluid is not 
considered in the present study, since compared with mechanical excitation, the acoustic 
loading is negligible. For a very thin plate under relatively weak excitation, or in case 
where the acoustic medium is more dense, e.g., sea water, the coupling effect between 
structure and acoustic medium may need to be considered. 

The methodology used in this research may also be extended to the study of 
vibration and radiated noise in structures with openings. In the boundary element method, 
there are usually two ways to handle the problem of structures with openings. The first is 
to estimate the impedance at the openings, and then use the regular BEM. If this method is 
used, the accuracy of estimation of the impedance is essential to the accuracy of the 
solutions, especially those in an area close to an opening. The solutions at farfield are 
usually not very sensitive to the estimation of the impedance. 

The second way to handle the problems posed by structures with openings is the 
multidomain boundary element technique (MDB). In the MDB, the openings are 
considered as interfaces. The pressure and velocity potential at interfaces are solved 
simultaneously by solving the system equation. The advantage of MDB is that the 
unknowns at the openings can be solved accurately. However, when compared with the 
first method, MDB takes much more CPU time. 
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